
Author: Curtis A. Ingraham

C Micro Logic Corp (1987)

SVG version by RetroParla (2024)

RETRO
PARLA
ASOCIACION DE AFICIONADOS A LA RETROINFORMATICA DE PARLA

www.retroparla.com

R
MICRO LOGIC CORP.

HACKENSACK, NJ

MICRO
CHARTPROGRAMMER'S INSTANT REFERENCE CARD

68000
HOW TO USE

THIS
MICRO CHART

OPERANDS AND
ADDRESSING

STACKS AND
QUEUES

EXCEPTION PROCESSING

ADDRESSING MODES

ABBREVIATIONS

OPERANDS

ASCII

EXCEPTION DESCRIPTIONS

PINOUTS

The INSTRUCTION SET section
describes each instruction
and gives its addressing
modes, assembler syntax,
size, execution time, and
effect on the flags.

The OPERANDS AND ADDRESSING
section has general
information on operand
sizes, data organization in
memory and registers,
addressing modes, stacks,
and queues.

The EXCEPTION PROCESSING
section explains the 68000's
response to errors, traps,
interrupts, and other
unusual conditions and its
use of reserved memory
locations.

The PINOUTS section lists
the IC package pin numbers
and signal names.

The ABBREVIATIONS section
defines abbreviations used
throughout this Micro Chart.

INSTRUCTIONS: 1 to 5 words. Operation,
register, length, and sometimes operand
are given in first (Operation) word. O-
4 Extension words specify immediate
data, source address, and destination
address operands in that order; each, if
present, is 1-2 words.

REGISTERS: Sixteen 32-bit general
purpose registers consisting of eight
Data registers (D0-D7) and eight Address
registers (A0-A7), one 32-bit Program
Counter (PC), and one 16-bit Status
Register (SR). The Condition Code
register (CCR) is the lower byte of the
SR. A7 is the system Stack Pointer.
One of two registers, SSP or USP, is
used as A7; when one is active, the
other is inaccessible; see Supervisor
and User States below.

STATUS AND CONDITION CODE REGISTERS:

 System Byte User Byte (CCR)
 --------------- ---------------
Bit: 15 8 7 0
 - - - - - - - - - - - - - - - -
SR: T 0 S 0 0 I I I 0 0 0 X N Z V C

T: 1 = Trace mode, 0 = execute mode
S: 1 = Supervisor state, 0 = User state
III: Interrupt priority:
 111 = 7 (highest and non-maskable)
 000 = 0 (lowest)
X,N,Z,V,C - See Flags
Other bits are usually zero

SUPERVISOR STATE: The CPU is in
Supervisor state when S=1. A7 is the
SSP. All memory accesses are to the
Supervisor memory space. All
instructions are allowed. Only these
privileged instructions can switch the
CPU to User state by clearing the S bit:
ANDI to SR, EORI to SR, MOVE to SR, or
RTE.

USER STATE: The CPU is in User state
when the S=0. A7 is the USP. All
memory accesses are to the User memory
space. An attempt to execute a
Privileged instruction will cause an
exception. Only an exception can switch
the CPU to the Supervisor state.

* = Active low signal name
 suffix, or boolean
 inversion
$ = Hexadecimal
Ad = Destination Address
 register (A0-A7)
An = Address register (A0-
 A7)
As = Source Address register
 (A0-A7)
addr = address
addr.L = 32-bit absolute
 address
addr.W = 16-bit absolute
 address
B = Operand size is byte
BW = Operand size is byte or
 word
BWL = Operand size is byte,
 word, or long word
C = Carry flag in CCR
cc = Any of the sixteen
 condition codes: CC, CS,
 EQ, F, GE, GT, HI, LE, LS,
 LT, MI, NE, PL, T, VC, or
 VS
CCR = Condition Code
 register
CLKs = Execution time of
 instruction in CLK cycles
da = Immediate data
da3 = 3-bit immediate data
da4 = 4-bit immediate vector
 number
da8 = Immediate data byte
da16 = Immediate data word
da32 = Immediate data long
 word
Dd = Destination Data
 register (D0-D7)
di8 = 8-bit displacement
di16 = 16-bit displacement
Dn = Data register (D0-D7)
Ds = Source Data register
 (D0-D7)
dst = Destination operand
ea = Effective address
Hex = Hexadecimal
III = Interrupt mask (Bits
 10,9,8) in SR
L = Operand size is long
 word
LSB = Least significant (low
 order) bit; Bit 0
MSB = Most significant (high
 order) bit
N = Negative flag in CCR
PC = Program Counter
 register
PI = Privileged instuction
Rd = Destination register
 (A0-A7 or D0-D7)
Reads = Number of read bus
 cycles during instruction
 execution
reg = Register
regs = Registers
Rs = Source register (A0-A7
 or D0-D7)
S = Supervisor bit (Bit 13)
 in SR
SP = Stack Pointer register
 (SSP or USP)
SR = Status register,
 including CCR
src = Source operand
SSP = Supervisor Stack
 Pointer register
T = Trace bit (Bit 15) in SR
USP = User Stack Pointer
 register
V = Overflow flag in CCR
W = Operand size is word
WL = Operand size is word or
 long word
Words = Length of
 instruction in words
Writes = Number of write bus
 cycles during instruction
 execution
X = Extend flag in CCR
Xn = Index register (A0-A7
 or D0-D7)
Z = Zero flag in CCR

BIT NUMBERS: Low order (least
significant) bit is numbered 0.

OPERAND SIZES: Add suffix .B, .W, or .L
to instruction mnemonic for Byte (8
bits), Word (16), or Long Word (32).
The default size is Word.

DATA REGISTER OPERANDS (D0-D7): can be
1, 8, 16, or 32 bits. Only low order
part of register is used or changed for
byte and word operands; high order part
is not affected. Only one bit is used
or changed for bit operations.

ADDRESS REGISTER OPERANDS (A0-A7): If
destination, all 32 bits are affected,
and SOURCE WORD OPERAND IS SIGN-EXTENDED
to 32 bits before operation. If source,
all or low order half is used.

INDEX REGISTER (A0-A7 or D0-D7): Any
address or data register can be used as
a word (Xn.W, sign-extended low order
word) or a long word (Xn.L) index
register.

MEMORY OPERANDS: can be 1, 8, 16, or 32
bits. 1 byte per address. High order
byte of word has same address (always
even) as word; low order byte has next
higher address (odd). Instructions and
multibyte data start on even addresses.
Long word at address N has second word
at address N+2; second long word is at
address N+4. Most significant digit of
BCD byte is in high order bits; less
significant digits are in bytes at
higher addresses. The FC2-FC0 outputs
distinguish program references from data
references; all writes are data
references; all operand reads except PC
relative are data references.

FC2 FC1 FC0 Cycle Type
--- --- --- ----------------------
 L L L (reserved by Motorola)
 L L H User Data
 L H L User Program
 L H H (reserved for user def.)
 H L L (reserved by Motorola)
 H L H Supervisor Data
 H H L Supervisor Program
 H H H Interrupt Acknowledge

The data bus strobes define how the data
bus is used:

 Data Strobes Bus Use
UDS* LDS* R/W* D15-D8 D7-D0
---- ---- ---- ------ -----
 H H x n n
 L L H 15-8 7-0
 H L H n 7-0
 L H H 15-8 n
 L L L 15-8 7-0
 H L L 7-0m 7-0
 L H L 15-8 15-8m

* = Active low signal
H = High
L = Low
x = Don't care
n = No valid data
m = Maybe

SYSTEM STACK: A7 is the system Stack
Pointer used for subroutine calls. See
Operands and Addressing. The stack
grows from higher to lower addresses; SP
points to last word pushed on stack; SP
decrements before push, increments after
pop. Any instruction using -(A7) as the
destination operand is a push; any
instruction using (A7)+ as the source
operand is a pop.

USER STACK: To grow from higher address
to lower address, use -(Ad) to push,
(As)+ to pop; An points to top item.
To grow from lower address to higher
address, use (Ad)+ to push, -(As) to
pop; An points to next free spot.

USER QUEUE: A FIFO list. To grow from
lower address to higher address, use
(Ad)+ to put, -(As) to get. To grow
from higher address to lower address,
use -(Ad) to put, (As)+ to get.

SOURCE,DESTINATION: Instructions that
move data from a source to a destination
are written in the form:
 mnemonic src,dst

IMPLIED: Operand is in one of these
registers: CCR, PC, SR, SP, SSP, or USP.
Example: TRAPV

QUICK IMMEDIATE (_Q #_): 3-bit operand
(1 to 8) is in operation word for ADDQ
and SUBQ; 8-bit operand (-128 to +127)
is in operation word for MOVEQ.
Example: ADDQ #7,D3

IMMEDIATE (#da): Byte operand is in low
order byte of extension word; word
operand is in extension word; long word
operand is in 2 extension words.
Example: ORI.B #$7F,D6

ABSOLUTE SHORT (addr.W): Extension word,
sign-extended to 32 bits, is address of
operand. Example: ASL VAR6.W

ABSOLUTE LONG (addr.L): Two extension
words are 32-bit address of operand.
Example: CLR COUNT.L

PROGRAM COUNTER RELATIVE WITH
DISPLACEMENT (di16(PC)): Address of
operand is sum of address of extension
word and sign-extended displacement in
extension word.
Example: LEA LOOKUP(PC),A4

PROGRAM COUNTER RELATIVE WITH INDEX AND
DISPLACEMENT (di8(PC,Xn)): Address of
operand is sum of address of extension
word, contents of index register, and
sign-extended displacement in low byte
of extension word. Index register can
be any Address or Data register.
Example: JMP NEXT(PC,D1.L)

DATA REGISTER DIRECT (Dn): Operand is in
data register. Example: CLR.B D0

ADDRESS REGISTER DIRECT (An): Operand is
in address register.
Example: CMPA.L D0,A0

ADDRESS REGISTER INDIRECT ((An)):
Address of operand is in address
register. Example: LSR (A5)

ADDRESS REGISTER INDIRECT WITH
PREDECREMENT (-(An)) OR POSTINCREMENT
((An)+): Address of operand is in
address register. Address register is
decremented before use or incremented
after use by 1, 2, or 4 depending on
operand size. If size is byte and
register is SP, adjustment is by 2, not
1. Examples: TAS -(A1) NEG.B (A6)+

ADDRESS REGISTER INDIRECT WITH
DISPLACEMENT (di16(An)): Address of
operand is sum of sign-extended
extension word and address register
contents.
Example: EORI.B #$55,LIGHTS(A2)

ADDRESS REGISTER INDIRECT WITH INDEX AND
DISPLACEMENT (di8(An,Xn)):Address of
operand is sum of address register
contents, index register contents, and
sign-extended displacement in LOW BYTE
of extension word.
Example: ROL.W BIAS(A0,A1.W)

 MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 011 100 101 110 111

 0 0000 NUL DLE SP 0 @ P ` p
 1 0001 SOH DC1 ! 1 A Q a q
 2 0010 STX DC2 " 2 B R b r
 3 0011 ETX DC3 # 3 C S c s

 4 0100 EOT DC4 $ 4 D T d t
 5 0101 ENQ NAK % 5 E U e u
 6 0110 ACK SYN & 6 F V f v
 7 0111 BEL ETB ' 7 G W g w

 8 1000 BS CAN (8 H X h x
 9 1001 HT EM) 9 I Y i y
 A 1010 LF SUB * : J Z j z
 B 1011 VT ESX + ; K [k {

 C 1100 FF FS , < L \ l |
 D 1101 CR GS - = M] m }
 E 1110 SO RS . > N ^ n ~
 F 1111 SI US / ? O _ o DEL

The CPU's response to unusual internal or
external conditions.

EXCEPTION VECTORS:
Number Addr
Dec Hex Hex Use CLKs.Reads.Writes
--- -- ------ ----------------------------
 0 00 000000 (Reset SSP; see note below)
 1 01 000004 RESET* 40.6.0
 2 02 000008 Bus Error (BERR*) 50.4.7
 3 03 00000C Address Error 50.4.7
 4 04 000010 Illegal Instruction 34.4.3
 5 05 000014 Divide by zero 42.5.4
 6 06 000018 CHK operand out of bounds
 7 07 00001C TRAPV when V=1 34.4.3
 8 08 000020 Privilege violation 34.4.3
 9 09 000024 Trace 34.4.3
 10 0A 000028 Line 1010 emulator 34.4.3
 11 0B 00002C Line 1111 emulator 34.4.3
 12 0C 000030 (reserved)
 13 0D 000034 (reserved)
 14 0E 000038 (reserved)
 15 0F 00003C Unitialized irpt 44.5.3
 16 10 000040 (reserved)
 to to to
 23 17 00005C (reserved)
 24 18 000060 Spurious irpt 44.5.3
 25 19 000064 Ext irpt 1 autovector 44.5.3
 26 1A 000068 Ext irpt 2 autovector 44.5.3
 27 1B 00006C Ext irpt 3 autovector 44.5.3
 28 1C 000070 Ext irpt 4 autovector 44.5.3
 29 1D 000074 Ext irpt 5 autovector 44.5.3
 30 1E 000078 Ext irpt 6 autovector 44.5.3
 31 1F 00007C Ext irpt 7 autovector 44.5.3
 32 20 000080 TRAP #0 instruction 38.4.4
 to to to
 47 2F 0000BC TRAP #15 instruction 38.4.4
 48 30 0000C0 (reserved)
 to to to
 63 3F 0000FC (reserved)
 64 40 000100 0th User interrupt 44.5.3
 to to to
255 FF 0003FC 191st User interrupt 44.5.3

Vectors 0 and 1 are in Supervisor Program
memory space; all others are in Supervisor
Data memory space.

EXCEPTION VECTORS: Each (except 0) holds
the long word address of an exception
handling routine. Vector 0 is not a
vector; it is the value loaded into the
SSP after a RESET*.

VECTOR NUMBER: Provided by CPU or external
logic. When multiplied by four, gives
address of vector.

EXCEPTION PROCESSING TIMES: CLKs is the
number of CPU CLK cycles to process the
exception and fetch the first two words of
the handler routine. Assumes a four CLK
interrupt acknowledge bus cycle and no
wait states. If CLKs are not shown here,
see the Instruction Set section.

EXCEPTION PRIORITIES (Highest to Lowest):
Reset; bus error and halt; address error;
trace; external (user) interrupts 7
through 1; illegal instruction; privilege
violation; trap, check, and divide by
zero.

EXCEPTION PROCESSING: All exception
processing is done in the Supervisor state
including use of the SSP for stacking.
Except as noted below, the CPU: 1. Saves
SR internally. 2. Forces S=1 and T=0 in
SR. 3. Gets the vector number. 4. Pushes
the saved SR then the PC onto the stack
using the SSP. 5. Loads the PC from the
exception vector. 6. Executes ahandler
routine. The saved PC is usually the
address of the first word of the next
instruction.

Listed in order of decreasing priority.

(reserved): Reserved for future use by
Motorola; do not use

RESET*: If RESET* and HALT* are BOTH input
low, the current bus cycle is aborted, and
exception processing begins when they
return high. The interrupt mask is set to
7 (III=111), no stacking occurs, and the
SSP and PC are loaded from Vectors 0 and
1. No other CPU registers are affected.
The CPU outputs RESET* low when it
executes the RESET instruction, but no
registers are affected.

BUS ERROR: When BERR* is input low, the
CPU aborts the current bus cycle and
floats the address and data busses. When
the BERR* input returns high, the CPU
stacks the Program Counter (unpredictable
value), the Status Register, and four more
words in this order: 1. The first word of
the executing instruction; 2. The lower 16
bits of the aborted bus address; 3. The
upper 16 bits of the address; 4. Five bits
of bus cycle information: Bit 4: 1=read,
0=write; Bit 3 = 0 if the CPU was
executing an instruction or processing a
TRAP, TRAPV, CHK or divide by zero
exception; Bit 3 = 1 if the CPU was
processing any other exception; Bits 2-0:
FC2-FC0.

When HALT* and BERR* are both input low,
the CPU will abort the cycle, then re-run
it when BERR* then HALT* return high. If
a bus error occurs during bus or address
error exception processing or while
reading the vector table, the CPU halts.

HALT*: When HALT* is input low (with
RESET* and BERR* high), the CPU finishes
the current bus cycle, stops, and floats
the address and data lines. Bus
arbitration operates normally during halt.
The CPU will continue when HALT* returns

high. The CPU outputs HALT* low when it
stops because of double bus fault. Then
only a low input on RESET* can restart the
CPU. See RESET* and BERR*.

ADDRESS ERROR: When the CPU fetches a word
from an odd address, it responds as it
does for a bus error. If a bus error
occurs during address error exception
processing, the CPU halts.

TRACE: When T=1 in the SR, an exception is
forced after each instruction executes.
An exception caused by an instruction is
processed before the Trace exception is.

EXTERNAL INTERRUPTS: External logic
encodes a priority level on IPL2*, IPL1*,
IPL0* (level sensitive). Level 7 is
highest and not maskable. Level 1 is
lowest. Level 0 is no interrupt. If the
encoded level is 7, or greater than III,
the CPU starts exception processing after
it completes the current instruction. The
CPU sets III to the encoded value when it
forces S=1 and T=0 in the SR. The vector
number is supplied internally (autovector)
if VPA* is low or externally (Interrupt
Acknowledge bus cycle) if VPA* is high; if
BERR* is low, the Spurious Interrupt
vector is used. Uninitialized 68000
support chips give vector number 15.

USER INTERRUPTS: These are external
interrupts for which external logic
provides an 8-bit vector ($40-$FF) during
the Interrupt Acknowledge bus cycle.

ILLEVAL, EMULATOR, AND UNIMPLEMENTED
INSTRUCTIONS: Any invalid instruction
opcode will cause an exception. Motorola
reserves each of these for future
definition except as follows. Opcodes
$4AFA, $4AFB, and $4AFC will always cause
an Illegal Instruction exception; the
first two are reserved for Motorola
products, and the third is reserved for
customer use. An opcode with 1010
($Axxxx) or 1111 ($Fxxxx) in Bits 15-12
will cause a Line 1010 or Line 1111
Emulator exception, respectively. All
other unimplemented opcodes cause an
Illegal Instruction exception.

PRIVILEGE VIOLATION: Execution of a
privileged instruction (PI) in User state
causes a privilege violation exception
(ANDI #da16,SR; EORI #da16,SR; MOVE
src,SR; MOVE As,USP; MOVE USP,Ad; ORI
#da16,SR; RESET; RTE; STOP #da16). The
saved PC is the address of the first word
of the PI.

TRAP, TRAPV, AND CHK: The TRAP instruction
always causes a trap exception, and four
bits in the instruction word provide part
of the vector number. The TRAPV and CHK
instructions cause an exception if certain
conditions exist when they execute.

BUS ARBITRATION: determined by the BR*,
BG*, and BGACK* signals.

 68000
 64-Pin DIP, Top View

* means active low.
< and > show direction. D4= 1 64=D5
= means bidirectional. D3= 2 63=D6
nc means no connection D2= 3 62=D7
inside. D1= 4 61=D8
 D0= 5 60=D9
 AS*< 6 59=D10
 UDS*< 7 58=D11
 LDS*< 8 57=D12
 R/W*< 9 56=D13
 DTACK*>10 55=D14
 BD*<11 54=D15
 BGACK*>12 53-GND
 BR*>13 52>A23
 VCC-14 51>A22
 CLK>15 50>A21
 GND-16 49-VCC
 HALT*=17 48>A20
 RESET*=18 47>A19
 VMA*<19 46>A18
 E<20 45>A17
 VPA*>21 44>A16
 BERR*>22 43>A15
 IPL2*>23 42>A14
 IPL1*>24 41>A13
 IPL0*>25 40>A12
 FC2<26 39>A11
 FC1<27 38>A10
 FC0<28 37>A9
 A1<29 36>A8
 A2<30 35>A7
 A3<31 34>A6
 A4<32 33>A5

R
MICRO LOGIC CORP.

HACKENSACK, NJ

MICRO
CHARTPROGRAMMER'S INSTANT REFERENCE CARD

68000
INSTRUCTION

SET
CYCLE CODES

INSTRUCTION NOTES CONDITION DEFS

FLAGS

MOVE TABLE

This table gives the
addressing modes for
each instruction. The
Cycle and Flag Code
column gives a code
for operand sizes,
instruction length,
timing, and affect on
flags. Example: Under
ADD src,Dd the flag
code A applies to all
addressing modes; cycle
code 1 applies to
ADD.B Ds,Dd and ADD.W
Ds,Dd; and cycle code
4 applies to ADD.L
Ds,Dd. See Flag and
Cycle Code tables.

 Oper- Cycle and
Inst ands Flag Code
---- ------ ---------
ABCD Ds,Dd B3 C
ABCD -(As),-(Ad) B42 C
 Add 2-digit BCD
 numbers plus X
ADD src,Dd A (add)
 Ds BW1 L4
 As W1 L4
 (As) BW6 L22
 (As)+ BW6 L22
 -(As) BW11 L29
 di16(As) BW18 L45
 di8(As,Xn) BW25 L53
 addr.W BW18 L45
 addr.L BW39 L69
 di16(PC) BW18 L45
 di8(PC,Xn) BW25 L53
ADD Ds,dst A (add)
 (Ad) BW15 L51
 (Ad)+ BW15 L51
 -(Ad) BW23 L65
 di16(Ad) BW35 L73
 di8(Ad,Xn) BW46 L83
 addr.W BW35 L73
 addr.L BW59 L90
ADDA src,Ad N
 Ds WL4
 As WL4
 (As) W13 L22
 (As)+ W13 L22
 -(As) W21 L29
 di16(As) W33 L45
 di8(As,Xn) W44 L53
 addr.W W33 L45
 addr.L W57 L69
 di16(PC) W33 L45
 di8(PC,Xn) W44 L53
 #da W18 L38
 Add to Ad
ADDI #da,dst A
 Dd BW8 L38
 (Ad) BW35 L90
 (Ad)+ BW35 L90
 -(Ad) BW46 L97
 di16(Ad) BW59 L101
 di8(Ad,Xn) BW70 L105
 addr.W BW59 L101
 addr.L BW80 L107
 Add immediate
ADDQ #da3,dst A
 Dd BW1 L4
 Ad WL4
 (Ad) BW15 L51
 (Ad)+ BW15 L51
 -(Ad) BW23 L65
 di16(Ad) BW35 L73
 di8(Ad,Xn) BW46 L83
 addr.W BW35 L73
 addr.L BW59 L90
Add quick immediate
 data (3 bits: 1-8); 1
 word instr.
ADDX Ds,Dd BW1 L4 A
 -(As),-(Ad) BW42 L96
 Add operands and X
 (1)
AND (See ADD, but no
 As,Dd) Logical AND S
ANDI (See ADDI) S
ANDI #da8,CCR B52 A
ANDI #da16,SR W52 A (PI)
 Logical AND immediate
ASL Ds,Dd BW5 L10 A/S
 #da3,Dd BW5 L10 A/S
 (Ad) W15 A
 (Ad)+ W15 A
 -(Ad) W23 A
 di16(Ad) W35 A
 di8(Ad,Xn) W46 A
 addr.W W35 A
 addr.L W59 A
 Arithmetic shift left
 memory word by 1 bit
 or Dd by count in Ds
 or immediate data
 (3); zero fill; last
 bit out goes to C and
 X; set V=1 if MSB
 changes, else V=0.
 If (Ds)=0 or #da3=0,
 set flags only; flag
 code is S
ASR (See ASL) B/S
 Arithmetic shift
 right memory word by
 1 bit or Dd by count
 in Ds or immediate
 data (3); MSB fill;
 last bit out goes to
 C and X. If (Ds)=0
 or #da3=0, set flags
 only; flag code is S
Bcc di8 cc true 11 N
 cc false 4
Bcc di16 cc true 12
 cc false 17
 Branch if cc is true;
 di8=0 not allowed;
 cc=T,F not allowed
BCHG Ds,dst V
 Dd L4
 (Ad) B15
 (Ad)+ B15
 -(Ad) B23
 di16(Ad) B35
 di8(Ad,Xn) B46
 addr.W B35
 addr.L B59

BCHG #da8,dst
 Dd L17
 (Ad) B35
 (Ad)+ B35
 -(Ad) B46
 di16(Ad) B59
 di8(Ad,Xn) B70
 addr.W B59
 addr.L B80
 Flip bit specified by
 src in location given
 by dst; put result
 bit in Z (2)
BCLR (See BCHG,
 except:) V
 Ds,Dd L9
 #da8,Dd L24
 Clear bit specified
 by src in location
 given by dst; put
 complement of
 original bit in Z (2)
BRA di8 11 N
BRA di16 12 N
 Branch always; di8=0
 not allowed
BSET (See BCHG) V
 Set bit specified by
 src in location given
 by dst; put
 complement of
 original bit in Z (2)
BSR di8 43 N
BSR di16 47 N
 Branch (call) to
 subroutine; push long
 word address of next
 instruction using SP;
 di8=0 not allowed
BTST Ds,dst V
 Dd L3
 (Ad) B6
 (Ad)+ B6
 -(Ad) B11
 di16(Ad) B18
 di8(Ad,Xn) B25
 addr.W B18
 addr.L B39
 di16(PC) B18
 di8(PC,Xn) B25
 #da8 B8
BTST #da8,dst V
 Dd L12
 (Ad) B18
 (Ad)+ B18
 -(Ad) B25
 di16(Ad) B39
 di8(Ad,Xn) B48
 addr.W B39
 addr.L B62
 di16(PC) B39
 di8(PC,Xn) B48
 Set Z equal to
 complement of bit
 specified by src in
 location given by
 dst; no change to dst
 (2)
CHK src,Dd W
 In-Bounds/Out
 Ds W9/W109
 (As) W21/W110
 (As)+ W21/W110
 -(As) W28/W112
 di16(As) W44/W113
 di8(As,Xn) W52/W114
 addr.W W44/W113
 addr.L W68/W115
 di16(PC) W44/W113
 di8(PC,Xn) W52/W114
 #da16 W25/W111
 Check Dd low word
 against 0 and upper
 bound; cause
 exception if less
 than 0 (MSB=1) or
 greater than upper
 bound (0-$7FFF); src
 is 2's complement
 ($8000-$FFFF) of
 upper bound
CLR Dd BW1 L3 S
 (Ad) BW15 L51
 (Ad)+ BW15 L51
 -(Ad) BW23 L65
 di16(Ad) BW35 L73
 di8(Ad,Xn) BW46 L83
 addr.W BW35 L73
 addr.L BW59 L90
 Clear operand to 0;
 set N=0, Z=1 (4)
CMP src,Dd T
 Ds BW1 L3
 As W1 L3
 (As) BW6 L22
 (As)+ BW6 L22
 -(As) BW11 L28
 di16(As) BW18 L45
 di8(As,Xn) BW25 L53
 addr.W BW18 L45
 addr.L BW39 L69
 di16(PC) BW18 L45
 di8(PC,Xn) BW25 L53
 Compare Dd to src;
 subtract src from Dd,
 set flags, don't
 change operands; BLT,
 for example, branches
 after CMP if Dd is
 less than src
CMPA src,Ad T
 Ds WL3
 As WL3
 (As) W11 L22
 (As)+ W11 L22
 -(As) W13 L29
 di16(As) W25 L45
 di8(As,Xn) W33 L53
 addr.W W25 L45
 addr.L W48 L69
 di16(PC) W25 L45
 di8(PC,Xn) W33 L53
 #da W12 L27
 Compare Ad to src as
 CMP (5)

CMPI #da,dst T
 Dd BW8 L27
 (Ad) BW18 L58
 (Ad)+ BW18 L58
 -(Ad) BW25 L69
 di16(Ad) BW39 L79
 di8(Ad,Xn) BW48 L85
 addr.W BW39 L79
 addr.L BW62 L93
 Compare dst to
 immediate data as CMP
 (dst - immediate
 data)
CMPM (As)+,(Ad)+
 BW14 L50 T
 Compare 2 memory
 operands as CMP
DBcc Dn,di16 N
 cc true 17
 cc false & branch 12
 cc false & no br. 25
 Decrement and branch
 until cc is true;
 1)if cc is true, go
 to next instruction;
 2)if cc is false,
 decrement low word of
 Ds; 3)if Ds is -1, go
 to next instruction;
 4)if Ds is not -1,
 branch (loop); DBRA
 same as DBF
DIVS src,Dd T
 Ds W131
 (As) W132
 (As)+ W132
 -(As) W134
 di16(As) W135
 di8(As,Xn) W136
 addr.W W135
 addr.L W137
 di16(PC) W135
 di8(PC,Xn) W136
 #da16 W133
 Divide signed long Dd
 by signed word src,
 put signed quotient
 in low word and
 remainder (same sign
 as dividend unless
 zero) in high word of
 Dd; if src is zero,
 cause Divide By Zero
 Exception; if
 dividend is larger
 than a signed word,
 set V=1, leave Dd
 unchanged, and end
 early; N and Z
 describe quotient but
 are undefined if V=1;
 set C=0 always. CLKs
 is max; min is 90% of
 max
DIVU src,Dd T
 Ds W124
 (As) W125
 (As)+ W125
 -(As) W127
 di16(As) W128
 di8(As,Xn) W129
 addr.W W128
 addr.L W130
 di16(PC) W128
 di8(PC,Xn) W129
 #da16 W126
 Divide unsigned long
 Dd by unsigned word
 src, put quotient in
 low word and
 remainder in high
 word of Dd; if src is
 zero, cause Divide By
 Zero Exception; if
 dividend is larger
 than a word, set V=1,
 leave Dd unchanged,
 and end early; N and
 Z are undefined if
 V=1; set N=MSB of
 quotient; set Z=1 if
 quotient is zero; set
 C=0 always. CLKs is
 max; min is 90% of
 max
EOR (See ADD Ds,dst) S
 Logical Exclusive OR;
 like bits give a zero
 bit; differing bits
 give a 1 bit
EORI (See ADDI) S
 Logical Exclusive OR
 immediate
EORI #da8,CCR B52 A
EORI #da16,SR W52 A
 Logical Exclusive OR
 immediate to SR (PI)
 or CCR
EXG Rs,Rd L3 N
 Exchange the contents
 of 2 regs; use Ds,Ad
 not As,Dd
EXT Dd WL1 S
 Extend sign; fill
 higher byte or word
 with lower MSB
ILLEGAL 103 N
 Invalid object codes
 cause Illegal
 instruction exception
JMP (Ad) 6 N
 di16(Ad) 12
 di8(Ad,Xn) 25
 addr.W 12
 addr.L 20
 di16(PC) 12
 di8(PC,Xn) 25
 Jump unconditionally
JSR (Ad) 32 N
 di16(Ad) 43
 di8(Ad,Xn) 64
 addr.W 47
 addr.L 60
 di16(PC) 47
 di8(PC,Xn) 67
 Jump to subroutine;
 push long word
 address of next
 instruction using SP

LEA src,Ad N
 (As) L1
 di16(As) L8
 di8(As,Xn) L17
 addr.W L8
 addr.L L20
 di16(PC) L8
 di8(PC,Xn) L17
 Load effective
 address; calculate
 long word absolute
 address of operand,
 and put address in Ad
 for later use
LINK As,di16 36 N
 Link and allocate
 stack space; save As
 contents on stack,
 copy new SP into As,
 and add di16 to SP;
 SP then points to
 lowest and As to
 highest address +1 of
 stack space; di16
 must be 2's
 complement of size;
 use at start of
 subroutine to reserve
 temporary data space
 on stack; undo with
 UNLK
LSL (See ASL) B
 Logical shift left
 memory word by 1 bit
 or Dd by count in Ds
 or immediate data
 (3); zero fill; last
 bit out goes to C and
 X. If (Ds)=0 or
 #da3=0, set flags
 only; flag code is S
LSR (See ASL) B
 Logical shift right
 memory word by 1 bit
 or Dd by count in Ds
 or immediate data
 (3); zero fill; last
 bit out goes to C and
 X. If (Ds)=0 or
 #da3=0, set flags
 only; flag code is S
MOVE src,dst S
 Move from src to dst;
 see MOVE table,
 except as follows
MOVE src,SR (PI) and
MOVE src,CCR A
 Ds W13
 (As) W29
 (As)+ W29
 -(As) W41
 di16(As) W53
 di8(As,Xn) W66
 addr.W W53
 addr.L W76
 di16(PC) W53
 di8(PC,Xn) W66
 #da16 W33
 If to CCR, only low
 byte is affected
MOVE SR,dst N
 Dd W3
 (Ad) W15
 (Ad)+ W15
 -(Ad) W23
 di16(Ad) W35
 di8(Ad,Xn) W46
 addr.W W35
 addr.L W59
MOVE As,USP L1 (PI) N
MOVE USP,Ad L1 (PI) N
MOVEA src,Ad N
 See Move table
MOVEM rl,dst N
 (Ad) W37 L75
 -(Ad) W37 L75
 di16(Ad) W61 L91
 di8(Ad,Xn) W71 L98
 addr.W W61 L91
 addr.L W82 L102
MOVEM src,rl N
 (As) W56 L88
 (As)+ W56 L88
 di16(As) W78 L100
 di8(As,Xn) W84 L104
 addr.W W78 L100
 addr.L W92 L106
 di16(PC) W78 L100
 di8(PC,Xn) W84 L104
 Move multiple regs
 (D0-D7, A0-A7) to or
 from consecutive
 memory locations; 1s
 in 16-bit reg list
 bit map rl give regs
 to move; LSB gives
 first reg moved, MSB
 last; -(Ad) mode
 write order is A7-A0-
 D7-D0 from start
 address minus 2
 through lower
 addresses, and final
 Ad points to last
 word written; for
 other modes order is
 D0-D7-A0-A7 from
 start address through
 higher addresses;
 (As)+ mode final As
 points to last word
 read plus 2; word
 operands read from
 memory are sign-
 extended to 32 bits;
 1 extra read cycle
 occurs in memory to
 reg instruction.
 Example: MOVEM.L
 #$8002,(A5) would
 move D1 to (A5), then
 move A7 to (A5)+2; A5
 not changed

MOVEP Ds,di16(Ad)
 W36 L74 N
MOVEP di16(As),Dd
 W34 L72 N
 Move 2 or 4 bytes of
 peripheral data
 between a Data reg
 and alternate bytes
 of memory; high order
 reg byte moves
 to/from address, next
 lower byte to
 address+2, etc.;
 bytes move on upper
 half of data bus if
 address is even,
 lower half if address
 is odd; An does not
 change; for 8-bit
 peripherals
MOVEQ #da8,Dd L1 S
 Move byte of
 immediate (quick)
 data, sign-extended
 to 32 bits, to a Data
 reg (1 word instr.)
MULS src,Dd and
MULU src,Dd S
 Ds W116
 (As) W117
 (As)+ W117
 -(As) W119
 di16(As) W120
 di8(As,Xn) W121
 addr.W W120
 addr.L W122
 di16(PC) W120
 di8(PC,Xn) W121
 #da16 W118
 Multiply word in Dd
 by word src; put long
 product in Dd; signed
 or unsigned
NBCD Dd B3 C
 (Ad) B15
 (Ad)+ B15
 -(Ad) B23
 di16(Ad) B35
 di8(Ad,Xn) B46
 addr.W B35
 addr.L B59
 Negate BCD byte with
 extend; subtract
 operand and X from
 zero; gives 10's
 complement if X=0,
 9's complement if X=1
NEG (See CLR) A
 Negate; 2's
 complement
NEGX (See CLR) A
 Negate with extend;
 subtract operand and
 X from 0 (1)
NOP 1 N
 No operation
NOT (See CLR) S
 Logical (1's)
 complement
OR (See ADD, except no
 As,Ad) S
 Logical OR
ORI (See ADDI) S
 Logical OR immediate
ORI #da8,CCR B52 A
ORI #da16,SR W52 (PI) A
 Logical OR immediate
 to SR or CCR
PEA (Ad) L16 N
 di16(Ad) L36
 di8(Ad,Xn) L55
 addr.W L36
 addr.L L60
 di16(PC) L36
 di8(PC,Xn) L55
 Push effective
 address; calculate
 long word absolute
 address of operand
 and push address onto
 stack for later use
RESET 123 (PI) N
 Output RESET* line
 low for 124 CLKs; no
 CPU regs are affected
ROL (See ASL) U
 Rotate left memory
 word by 1 bit or Dd
 by count in Ds or
 immediate data (3);
 last bit out goes
 back in and to C. If
 (Ds)=0 or #da3=0, set
 flags only; flag code
 is S
ROR (See ASL) U
 Rotate right memory
 word by 1 bit or Dd
 by count in Ds or
 immediate data (3);
 last bit out goes
 back in and to C. If
 (Ds)=0 or #da3=0, set
 flags only; flag code
 is S
ROXL (See ASL) B
 ROL with extend; same
 as ROL except last
 bit out goes to C and
 X; X goes back in.
 If (Ds)=0 or #da3=0,
 set flags only; flag
 code is U; set C to X
ROXR (See ASL) B
 ROR with extend; same
 as ROR except last
 bit out goes to C and
 X; X goes back in.
 If (Ds)=0 or #da3=0,
 set flags only; flag
 code is U; set C to X
RTE 50 (PI) A
 Return from
 exception; pop SR
 then PC from stack

RTR 50 A
 Return and restore;
 pop CCR then PC from
 stack; upper byte of
 SR is not affected
RTS 31 N
 Return from
 subroutine; pop PC
 from stack
SBCD Ds,Dd B3 C
SBCD -(As),-(Ad) B42 C
 Subtract 2-digit BCD
 src and X from dst
Scc (See NBCD, except):
 Scc Dd cc true B3 N
 Scc Dd cc false B1 N
 Set dst to $FF if cc
 is true, $00 if cc is
 false (4)
STOP #da16 2 (PI) A
 Move immediate word
 into SR and stop
 executing; start if T
 was 1 or after reset
 or higher priority
 interrupt occurs
SUB (See ADD) A
 Subtract src from dst
SUBA (See ADDA) N
 Subtract from Ad
SUBI (See ADDI) A
 Subtract immediate
SUBQ (See ADDQ) A
 Subtract quick
 immediate data (3
 bits: 1-8); 1 word
 instr.
SUBX (See ADDX) A
 Subtract src and X
 from dst (1)
SWAP Dd W1 S
 Swap Data reg halves
 (words)
TAS Dd B1 S
 (Ad) B23
 (Ad)+ B23
 -(Ad) B30
 di16(Ad) B46
 di8(Ad,Xn) B54
 addr.W B46
 addr.L B70
 Test and set; set N
 and Z per dst, then
 set Bit 7 of dst; not
 interruptible between
 read and write
TRAP #da4 108 N
 Cause Trap exception;
 like breakpoint or
 software interrupt;
 see Exception
 Processing
TRAPV Trap 103 N
 No trap 1
 Cause TRAPV exception
 if V=1
TST Dd BWL1 S
 (Ad) BW6 L14
 (Ad)+ BW6 L14
 -(Ad) BW11 L22
 di16(Ad) BW18 L34
 di8(Ad,Xn) BW25 L45
 addr.W BW18 L34
 addr.L BW39 L58
 Test against 0, set
 flags only
UNLK As 14 N
 Unlink and deallocate
 stack space; copy As
 to SP and pop long
 word from stack into
 As; use after LINK to
 restore stack and As

Cycle codes give
instruction length in
words and execution
time in CLKs. Bus
read and write cycles
are assumed to be four
CLK cycles each. If
bus wait states occur,
you must add them to
the CLKs. The numbers
of read and write bus
cycles per instruction
are given for this
purpose.

Listed in order of
increasing CLKs,
increasing words,
increasing
reads+writes, and
increasing writes.
For ordering only, s=1
and r=2 are assumed.

r = # of regs moved
s = shift count

Cycle Words.CLKs.
Code Reads.Writes
---- -----------------
1 1.4.1.0
2 2.4.0.0
3 1.6.1.0
4 1.8.1.0
5 1.6+2s.1.0
6 1.8.2.0
7 1.8.1.1
8 2.8.2.0
9 1.10.1.0
10 1.8+2s.1.0
11 1.10.2.0
12 2.10.2.0
13 1.12.2.0
14 1.12.3.0
15 1.12.2.1
16 1.12.1.2
17 2.12.2.0
18 2.12.3.0
19 2.12.2.1
20 3.12.3.0
21 1.14.2.0
22 1.14.3.0
23 1.14.2.1
24 2.14.2.0
25 2.14.3.0
26 2.14.2.1
27 3.14.3.0
28 1.16.2.0
29 1.16.3.0
30 1.16.2.1
31 1.16.4.0
32 1.16.2.2
33 2.16.3.0
34 2.16.4.0
35 2.16.3.1
36 2.16.2.2
37 2.8+4r.2.r
38 3.16.3.0
39 3.16.4.0
40 3.16.3.1
41 1.18.4.0
42 1.18.3.1
43 1.18.2.2
44 2.18.3.0
45 2.18.4.0
46 2.18.3.1
47 2.18.2.2
48 3.18.4.0
49 3.18.3.1
50 1.20.5.0
51 1.20.3.2
52 2.20.3.0

53 2.20.4.0
54 2.20.3.1
55 2.20.2.2
56 2.12+4r.3+r.0
57 3.20.4.0
58 3.20.5.0
59 3.20.4.1
60 3.20.3.2
61 3.12+4r.3.r
62 4.20.5.0
63 4.20.4.1
64 1.22.2.2
65 1.22.3.2
66 2.22.4.0
67 2.22.2.2
68 3.22.4.0
69 3.22.5.0
70 3.22.4.1
71 3.14+4r.3.r
72 2.24.6.0
73 2.24.4.2
74 2.24.2.4
75 2.8+8r.2.2r
76 3.24.5.0
77 3.24.4.1
78 3.16+4r.4+r.0
79 4.24.6.0
80 4.24.5.1
81 4.24.4.2
82 4.16+4r.4.r
83 2.26.4.2
84 3.18+4r.4+r.0
85 4.26.6.0
86 4.26.5.1
87 4.26.4.2
88 2.12+8r.3+2r.0
89 2.28.4.2
90 3.28.5.2
91 3.12+8r.3.2r
92 4.20+4r.5+r.0
93 5.28.7.0
94 5.28.6.1
95 5.28.5.2
96 1.30.5.2
97 3.30.5.2
98 3.14+8r.3.2r
99 3.32.5.2
100 3.16+8r.4+2r.0
101 4.32.6.2
102 4.16+8r.4.2r
103 1.34.4.3
104 3.18+8t.4+2r.0
105 4.34.6.2
106 4.20+8r.5+2r.0
107 5.36.7.2
108 1.38.4.4
109 1.44.5.4
110 1.48.6.4
111 2.48.6.4
112 1.50.6.4
113 2.52.7.4
114 2.54.7.4
115 3.56.8.4
116 1.70.1.0
117 1.74.2.0
118 2.74.2.0
119 1.76.2.0
120 2.78.3.0
121 2.80.3.0
122 3.82.4.0
123 1.132.1.0
124 1.140.1.0
125 1.144.2.0
126 2.144.2.0
127 1.146.2.0
128 2.148.3.0
129 2.150.3.0
130 3.152.4.0
131 1.158.1.0
132 1.162.2.0
133 2.162.2.0
134 1.164.2.0
135 2.166.3.0
136 2.168.3.0
137 3.170.4.0

(Applicable where indicated)
(1) Z is cleared if result is non-zero, but
unchanged otherwise. Set or reset Z before
start of operation to detect zero result,
especially of repeated operation.
(2) Bit number is modulo B for memory
operand, modulo 32 for reg operand
(3) Shift or rotate count is modulo 8 for
memory operand, modulo 64 for reg operand
(4) A dst operand in memory is read before
it is written
(5) Flags are not affected if dst is Ad,
except for CMPA

CC Carry Clear C*
CS Carry Set C
EQ Equal Z
F False 0
GE Greater or Equal
 (N.V)+(N*.V*)
GT Greater Than
 (N.V.Z*)+(N*.V*.Z*)
HI Higher C*.Z*
HS Higher or Same C*
LE Less or Equal
 Z+(N.V*)+(N*.V)
LO Lower C
LS Lower or Same C+Z
LT Less Than (N.V*)+(N*.V)
MI Minus N
NE Not Equal Z*
PL Plus N*
T True 1
VC Overflow Clear V*
VS Overflow Set V
 . means AND; + means OR;
 N* means NOT N; G & Less
 are signed results; H &
 Lower are unsigned results

Flags
Affected:
A = X N Z V C
B = X N Z VC C Shift and rotate only
C = X N? Z V? C BCD only; C is decimal
 carry or borrow (1)
S = - N Z VC CC
T = - N Z V C Compare and divide only
U = - N Z VC C Rotate only
V = - - Z - - Bit ops only
W = - N Z? V? C? CHK only
N = None
 A, B, C mean all; N means none;
 S, T, U, V, W mean some
 f? becomes undefined
 fC cleared to zero
 f set/cleared according to result
 - not changed

 Condition for flag=1,
 CCR except as noted in
Flag Bit Flag Name instruction descriptions
---- --- --------- ------------------------
 X 4 Extend Carry
 N 3 Negative MSB of result = 1
 Z 2 Zero Result=0
 V 1 Overflow Overflow occurs
 C 0 Carry Carry or borrow occurs

 dst-> addr.L
 di8(Ad,Xn) |
 di16(Ad)/addr.W | |
 (Ad)/(Ad)+/-(Ad) | | |
src Dd/Ad* | | | |
------ ------ -- --- --- ---
MOVE.B and MOVE.W src,dst:
Ds 1 7 19 26 40
As 1 7 19 26 40
(As) 6 15 35 46 59
(As)+ 6 15 35 46 59
-(As) 11 23 46 54 70
di16(As) 18 35 59 70 80
di8(As,Xn) 25 46 70 77 86
addr.W 18 35 59 70 80
addr.L 39 59 80 86 94
di16(PC) 18 35 59 70 80
di8(PC,Xn) 25 46 70 77 86
#da 8 19 40 49 63

MOVE.L src,dst:
Ds 1 16 36 47 60
As 1 16 36 47 60
(As) 14 51 73 83 90
(As)+ 14 51 73 83 90
-(As) 22 65 83 89 97
di16(As) 34 73 90 97 101
di8(As,Xn) 45 83 97 99 105
addr.W 34 73 90 97 101
addr.L 58 90 101 105 107
di16(PC) 34 73 90 97 101
di8(PC,Xn) 45 83 97 99 105
#da32 20 60 81 87 95
 * MOVEA.W or MOVEA.L src,Ad

