
R
MICRO LOGIC CORP.

HACKENSACK, NJ

MICRO
CHARTPROGRAMMER'S INSTANT REFERENCE CARD

C LANGUAGE
INTRODUCTION

BASIC DATA TYPES

CONVERSION OF DATA TYPES

STATEMENT SUMMARY

OPERATORS

EXPRESSIONS ESC CHARS

PREPROCESSOR STATEMENTS

typedef

CONSTANTS

VARIABLE USAGE

ARRAYS

POINTERS

FUNCTIONS

STRUCTURES

UNIONS

ENUM DATA TYPES

This card is a concise comprehensive reference
for C language programmers and those learning C.
It saves you time and lets you avoid cumbersome
manuals.

The C programming language is becoming the
standard language for developing both system and
application programs. There are several reasons
for its popularity. C is flexible with few
restrictions on the programmer. C compilers
produce fast and short machine code. And
finally, C is the primary language used in the
UNIX (trademark of AT&T Bell Laboratories)
operating system (over 90% of the UNIX system is
itself written in C). Because it is a popular
"high level" language, it allows software to be
used on many machines without being rewritten.

This card is organized so that you can keep your
train of thought while programming in C (without
stopping to flip thru a manual.) The result is
fewer interruptions, more error-free code, and
higher productivity.

The following notations are used: []--enclosed
item is optional; fn--function; rtn--return;
ptd--pointed; ptr--pointer; TRUE--non-zero value;
FALSE--zero value.

 TYPE DESCRIPTION
 --
 char Single character
 double Extended precision floating pt
 float Floating point
 int Integer
 long int Extended precision integer
 short int Reduced precision integer
 unsigned char Non-negative character
 unsigned int Non-negative integer
 void No type; used for fn
 declarations and 'ignoring' a
 value returned from a fn

Before performing an arithmetic operation,
operands are made consistent with each other by
converting with this procedure:

1. All float operands are converted to double.
All char or short operands are converted to int.
2 If either operand is double, the other is
converted to double. The result is double.
3. If either operand is long int, the other is
converted to long int. The result is long int.
4. If either operand is unsigned, the other is
converted to unsigned. The result is unsigned.
5. If this step is reached, both operands must be
of type int. The result will be int.

STATEMENT DESCRIPTION

break; Terminates execution of for,
 while, do, or switch

continue; Skips statements that follow
 in a do, for, or while; then
 continues executing the loop

do Executes statement until
 statement expr is FALSE; statement is
while (expr); executed at least once

for (e1; e2; e3) Evaluates expression e1 once;
 statement then repeatedly evaluates e2,
 statement, and e3 (in that
 order) until e2 is FALSE;
 eg: for (i=1; i<=10; ++i)...;
 note that statement might not
 be executed if e2 is FALSE
 on first evaluation

goto label; Branches to statement
 preceded by label:, which
 must be in same function as
 the goto

if (expr) If expr is TRUE, then
 statement executes statement;
 otherwise skips it

if (expr) If expr is TRUE, then
 statement1 executes statement1;
else otherwise executes
 statement2 statement2

; (null statement) No effect; satisfies
 statement requirement in
 do, for, and while

return; Returns from function back
 to caller; no value returned

return expr; Returns from function back
 to caller with value of expr

switch (iexpr) iexpr is evaluated and then
 { compared against integer
 case const1: constant exprs const1,
 statement const2, ...; if a match is
 ... found, then the statements
 break; that follow the case (up to
 case const2: the break) will be executed;
 statement if no match is found, then
 ... the statements in the
 break; default case (if supplied)
 ... will be executed; iexpr
 default: must be an integer-valued
 statement expression
 ...
 break;
 }

while (expr) Executes statement as long
 statement as expr is TRUE; statement
 might not be executed if
 expr is FALSE the first time
 it's evaluated

NOTES:

expr is any expression; statement is any
expression terminated by a semicolon, one of the
statements listed above, or one or more
statements enclosed by braces {...}.

OPER DESCRIPTION EXAMPLE ASSOC

() Function call sqrt (x)
[] Array element ref vals[10] L-R
-> Ptr to struc memb emp_ptr->name
. Struc member ref employee.name

- Unary minus -a
++ Increment ++ptr
-- Decrement --count unary
! Logical negation ! done oper- R-L
~ Ones complement ~077 ators
* Ptr indirection *ptr
& Address of &x
sizeof Size in bytes sizeof (struct s)
(type) Type conversion (float) total / n

* Multiplication i * j
/ Division i / j L-R
% Modulus i % j

+ Addition vals + i L-R
- Subtraction x - 100

<< Left shift byte << 4 L-R
>> Right shift i >> 2

< Less than i < 100
<= Less than or eq to i <= j L-R
> Greater than i > 0
>= Greater or eq to grade >= 90

== Equal to result == 0 L-R
!= Not equal to c != EOF

& Bitwise AND word & 077 L-R

^ Bitwise XOR word1 ^ word2 L-R

| Bitwise OR word | bits L-R

&& Logical AND j > 0 && j < 10 L-R

|| Logical OR i > 80 || x_flag L-R

? : Conditional expr (a > b) ? a : b R-L

= *= /= %= += -=
&= ^= |= <<= >>= count += 2
 Assignment opers R-L

, Comma operator i = 10, j = 0 L-R

NOTES: L-R means left-to-right, R-L right-to-
left. Operators are listed in decreasing
order of precedence. Ops in the same box have
the same precedende. Associativity determines
order of evaluation for ops with the same
precedence (eg: a = b = c; is evaluated right-
to-left as: a = (b = c)).

An expression is a
variable name, func-
tion name, array
name, constant,
function call, array
element reference,
or structure member
reference. Applying
an operator (this
can be an assignment
operator) to one or
more of these
(where appropriate)
is also an expres-
ssion. Expressions
may be parenthesized. An expression is a
"constant expression" if each term is a
constant.

\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\" Double quote
\' Single quote
\(CR) Line
 continuation
\nnn Octal character
 value

STATEMENT DESCRIPTION

#define id text text will be substituted for
 id wherever it later appears
 in the program; if construct
 id(a1,a2,...) is used, args
 a1, a2, ... will be replaced
 where they appear in text by
 corresponding args of macro
 call

#if expr If constant expression expr is
 ... TRUE, statements up to #endif
#endif will be processed, otherwise
 they will not be.

#if expr If constant expression expr is
 ... TRUE, statements up to #else
#else will be processed, otherwise
 ... those between the #else and
#endif #endif will be processed

#ifdef id If id is defined (with #define
 ... or on the command line) state-
#endif ments up to #endif will be
 processed; otherwise they will
 not be; (optional #else)

#ifndef id If id has not been defined,
 ... statements up to #endif will
#endif be processed; (optional #else
 construct)

#include "file" Inserts contents of file in
 -or- program; double quotes mean
#include <file> look first in same directory
 as source prog, then in
 standard places; brackets mean
 only standard places

#line n "file" Identifies subsequent lines
 of the prog as coming from
 file, beginning at line n;
 file is optional

#undef id Remove definition of id

NOTES: Preprocessor statements can be continued
over multiple lines provided each line to be
continued ends with a backslash character (\).
Statements can also be nested.

EXAMPLES:
#define BUFSIZE 512
#define max(a,b) (((a) > (b)) ? (a) : (b))
#include <stdio.h>

typedef is used to assign a new name to a data
type. To use it, make believe you're declaring a
variable of that particular data type. Where
you'd normally write the variable name, write the
new data type name instead. In front of
everything, place the keyword typedef. For
example:

 typedef struct /* define type COMPLEX */
 {
 float real;
 float imaginary;
 } COMPLEX;

 COMPLEX c1, c2, sum; /* declare vars */

TYPE SYNTAX EXAMPLES

char single quotes 'a' '\n'
char string double quotes "hello" ""
double (note 1)
enumeration (note 2) red true
float (note 3) 7.2 2.e-15 -1E9
hex integer 0X,0x 0xFF 0Xff 0xA000
int 17 -5
long int l or L 25l 100L (note 4)
octal int 0 (zero) 0777 0100

1. all float constants are treated as double
2. identifier previously declared for an
 enumerated type; value treated as int
3. decimal point and/or scientific notation
4. or any int too large for normal int

STORAGE CAN BE INIT
CLASS DECLARED REFERENCED WITH NOTES

static outside fn anywhere in const 1
 file expr
 inside fn/b inside fn/b only

extern outside fn anywhere cannot 2
 in file be
 inside fn/b inside fn/b init

auto inside fn/b inside fn/b any expr 3

register inside fn/b inside fn/b any expr 3,4

omitted outside fn anywhere in const 5
 file or other expr
 files w/ext only
 declaration
 inside fn/b (see auto) (see auto) 6

NOTES: (fn/b means function or statement block)
1. init at start of prog execution; deflt is zero
2. var must be defined in only 1 place w/o extern
3. cannot init arrays & structures; var is init
 each time fn is called; no default value
4. reg assignment not guaranteed; restrict. types
 can be assigned to registers.
5. var can be decl. in only one place;
 initialized at start of prog execution;
 default is zero
6. defaults to auto

A single-dimensional array aname of n elements of
a specified type and with specified initial
values (optional) is declared with:

 type aname[n] = { val1, val2, ... };

If complete list of initial values is specified,
n can be omitted. Only static or global arrays
can be initialized. Char arrays can be init by a
string of chars in double quotes. Valid
subscripts of the array range from 0 through n-1.
Multi dimensional arrays are declared with:

 type aname[n1][n2]... = { init_list };

Values listed in the initialization list are
assigned in 'dimension order' (i.e. as if last
dimension were increasing first). Nested pairs
of braces can be used to change this order if
desired. Here are some examples:

 /* array of char */
 static char hisname[] = { "John Smith" };

 /* array of char ptrs */
 static char *days[7] =
 {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};

 /* 3 x 2 array of ints */
 int matrix [3][2] = { { 10, 17 },
 { -5, 0 },
 { 11, 21 } };

 /* array of struct complex */
 struct complex sensor_data[100];

A variable name can be declared to be a pointer
to a specified type by a statement of the
form:
 type * name;
EXAMPLES:
 /* numptr points to floating number */
 float *numptr;

 /* pointer to struct complex */
 struct complex *cp;

 /* if the real part of the complex
 struct pointed to by cp is 0.0 ... */
 if (cp->real == 0.0)

 /* ptr to char; set equal to address of
 buf[25] (i.e. pointing to buf[25]) */
 char *sptr = &buf[25];

 /* store 'c' into loc ptd to by sptr */
 *sptr = 'c';

 /* set sptr pointing to next loc in buf */
 ++sptr;

 /* ptr to fn returning int */
 int (*fptr) ();

Functions follow this format:

 ret_type name (arg1,arg2,...)
 arg_declarations
 {
 local_var_declarations
 statement
 statement
 ...
 return value;
 }

Functions can be declared extern
(default) or static. Static fns
can be called only from the file in
which they are defined. ret_type
is the rtn type for the fn and can
be void if the fn rtns no value or
omitted if it rtns an int.

EXAMPLE:
 /* fn to find the length
 of a character string */

 int strlen (s)
 char *s;
 {
 int length = 0;

 while (*s++)
 ++length;
 return (length);
 }

To declare the type of value
returned by a function you're
calling, use a declaration of the
form: ret_type name ();

A structure sname of specified
members is declared with a
statement of the form:

 struct sname
 {
 member_declaration;
 member_declaration;
 ...
 } variable_list;

Each member_declaration is a type
followed by one or more member
names. An n-bit wide field mname
is declared with a statement of the
form ... type mname:n; ... If mname
is omitted, n unnamed bits are
reserved; if n is also zero, the
next field is aligned on a word
boundary. variable_list (optional)
declares variables of that
structure type. If sname is
supplied, variables can also later
be declared using the format:

 struct sname variable_list;

EXAMPLE:

 /* define complex struct */
 struct comlex
 {
 float real;
 float imaginary;
 };

 static struct complex c1 =
 { 5.0, 0.0 };
 struct complex c2, csum;

 c2 = c1; /* assign c1 to c2 */
 csum.real = c1.real + c2.real;

A union uname of members occupying
the same area of memory is declared
with a statement of the form:

 union uname
 {
 member_declaration;
 member_declaration;
 ...
 } variable_list;

Each member_declaration is a type
followed by one or more member
names; variable_list (optional)
declares variables of the
particular union type. If uname is
supplied, then variables can also
later be declared using the format:

 union uname variable_list;

NOTE: unions cannot be initialized.

An enumerated data type ename with
values enum1, enum2, ... is declar-
ed with a statement of the form:

 enum ename { enum1, enum2, ... }
 variable_list;

The optional variable_list declares
variables of the particular enum
type. Each enumerated value is an
identifier optionally followed by
an equals sign and a constant
expression. Sequential values
starting at 0 are assigned to these
values by the compiler unless the
enumn=value construct is used. If
ename is supplied, then variables
can also be declared later using
the format

 enum ename variable_list;

EXAMPLES:
 /* defined boolean */
 enum boolean {true, false};
 /* declare var & assign value */
 enum boolean done = false;
 /* test value */
 if (done == true)

R
MICRO LOGIC CORP.

HACKENSACK, NJ

MICRO
CHART

Author: Stephen G. Kochan

C Micro Logic Corp (1985)

SVG version by RetroParla (2024)

RETRO
PARLA
ASOCIACION DE AFICIONADOS A LA RETROINFORMATICA DE PARLA

www.retroparla.com

PROGRAMMER'S INSTANT REFERENCE CARD
C LANGUAGE

printf

UNIX cc COMMAND

THE lint COMMAND

scanf

COMMONLY USED FUNCTIONS

CMD LINE ARGS

UNIX TOOLS

REMINDERS

ASCII

printf is used to write data to standard
output (normally, your terminal.) To write
to a file, use fprintf; to 'write' data
into a character array, use sprintf. The
general format of a printf call is:

 printf (format, arg1, arg2,...)

where format is a character string
describing how arg1, arg2, ... are to be
printed. The general format of an item in
the format string is:

 %[flags][size][.prec][l]type

flags:
- left justify value (default is
 right justify)
+ precede value with a + or - sign
blank precede pos value with a blank
precede octal value with 0, hex
 value with 0x (or 0X for type
 X); force display of decimal
 point for float value, and leave
 trailing zeroes for type g and G

size: is a number specifying the minimum
size of the field; * instead of number
means next arg to printf specifies the size

prec: is the minimum number of digits to
display for ints; number of decimal places
for e and f; max number of significant
digits for g; max number of chars for s; *
instead of number means next arg to printf
specifies the precision

l: indicates a long int is being display-
ed; must be followed by d, o, u, x or X

type: specifies the type of value to be
displayed per the following single
character codes:

d an int
u an unsigned int
o an int in octal format
x an int in hex format, using a-f
X an int in hex format, using A-F
f a float (to 6 dec places by default)
e a float in exponential format (to 6
 decimal places by default)
E same as e except display E before
 exponent instead of e
g a float in f or e format, whichever
 takes less space w/o losing precision
G a float in f or E format, whichever
 takes less space
c a char
s a null-terminated char string (null
 not required if precision is given)
% an actual percent sign

NOTES: characters in the format string not
preceded by % are leterally printed;
floating pt formats display both floats and
doubles; integer formats can display chars,
short ints or ints (or long ints if type is
preceded by 1). EXAMPLE:

 i1 = 10; i2 = 20;
 printf ("%d + %d is %#x\n",
 i1, i2, i1 + i2);

Produces: 10 + 20 is 0x1e

Format: cc [options] files

OPTION DESCRIPTION

-c Don't link the program; forces
 creation of a .o file
-D id=text Define id with associated text
 (exactly as if #define id text
 appeared in prog); if just -D id
 is specified, id is defined as 1
-E Run preprocessor only
-f Compile for machine w/o floating
 point hardware
-g Generate more info for sdb use
-I dir Search dir for include files
-lx Link prog with lib x; -lm for math
-o file Write executable object into file;
 a.out is default
-O Optimize the code
-p Compile for analysis with prof cmd
-S Save assembler output in .s file

NOTE: Some of the above are actually
preprocessor (cpp) and linker (ld) options.
The standard C library libc is
automatically linked with a rrogram.

EXAMPLES: cc test.c Compiles test.c and
places executable object into a.out.
cc -o test main.c proc.c Compiles main.c
and proc.c and places executable object
into test.
cc -O stats.c -lm Compiles stats.c,
optimizes it, and links it with the math
library (-lm must be placed after stats.c).
cc -DDEBUG x1.c x2.o Compiles x1.c, with
defined name DEBUG, and links it with x2.0

lint can help you find bugs in your program
due to nonportable use of the language,
inconsistent use of variables,
uninitialized variables, passing wrong
argument types to functions, and so on.
Format: lint [options] files

OPT USE TO PREVENT FLAGGING OF

-a long values assigned to not-long vars
-b break statements that can't be reached
-h suspected bugs, waste, or style
-u functions and external vars used but
 not defined, or defined and not used
-v unused function arguments
-x vars declared extern and never used
------ Other options ------
-lx check prog against lint library
 llib-lx.ln; (-lm uses link math lib)
-n don't use standard or portable lint lib
-p check portability to other C dialects
-D see cc command
-I see cc command

scanf is used to read data from standard input.
To read data from a particular file, use fscanf.
To 'read' data from a character array, use
sscanf. The general format of a scanf call is:

 scanf (format, arg1, arg2, ...)

where format is a character string describing the
data to be read and arg1, arg2, ... point to
where the read-in data are to be stored. The
format of an item in the format string is:

 %[*][size][lh]type

* specifies that the field is to be skipped
 and not assigned (i.e., no corresponding
 ptr is supplied in the arg list)

size a number giving the max size of the field

lh is 'l' if value read is to be stored in a
 long int or double, or 'h' to store in
 short int

type indicates the type of value being read:

 CORRESPONDING
USE TO READ A ARG IS PTR TO

d decimal integer int
u unsigned decimal integer unsigned int
o octal integer int
x hexadecimal integer int
e,f,g floating point number float
s string of chars terminated array of char
 by a white-space character
c single character char
[...] string of chars terminated array of char
 by any char not enclosed
 between the [and]; if
 first char in brackets is ^,
 then following chars are
 string terminators instead
% percent sign not assigned

NOTES: Any chars in format string not preceded by
% will literally match chars on input (e.g. scanf
("value=%d", &ival); will match chars "value=" on
input, followed by an integer which will be read
and stored in ival. A blank space in format
string matches zero or more blank spaces on
input.

EXAMPLE: scanf ("%s %f %ld", text, &fval,
&lval); will read a string of chars, storing it
into character array ptd to by text; a floating
value, storing it into fval; and a long int,
storing it into lval.

 INCLUDE
FUNCTION FILE DESCRIPTION /ERROR RETURN/

int abs (n) absolute value of n
double acos (d) m arccosine of d /0/
char *asctime t convert tm struct to string
 (*tm) and rtn ptr to it
double asin (d) m arcsine of d /0/
double atan (d) m arctangent of d
double atan2 m arctangent of d1/d2
 (d1,d2)
double atof (s) ascii to float conv /HUGE,0/
int atoi (s) ascii to int conversion
long atol (s) ascii to long conversion
char *calloc allocate space for u1
 (u1,u2) elements each u2 bytes large,
 and set to 0 /NULL/
double ceil (d) m smallest integer not < d
void clearerr s reset error (incl. EOF)
 (f) on file
long clock () CPU time (microsec) since
 first call to clock
double cos (d) m cosine of d (d in radians)
char *ctime (*l) t convert time ptd to by l to
 string and rtn ptr to it
void exit (n) terminate execution,
 returning exit status n
double exp (d) m e to the d-th power /HUGE/
double fabs (d) m absolute value of d
int fclose (f) s close file /EOF/
int feof (f) s TRUE if end-of-file on f
int ferror (f) s TRUE if I/O error on f
int fflush (f) s force data write to f /EOF/
int fgetc (f) s read next char from f /EOF/
int fgets s read n-1 chars from f unless
 (s,n,f) newline or end of file
 reached; newline is stored
 in s if read /NULL/
int fileno (f) s integer file descriptor for f
double floor (d) m largest integer not > d
double fmod m d1 modulo d2
 (d1,d2)
FILE *fopen s open file named s1, mode s2;
 (s1,s2) "w"=write, "r"=read,
 "a"=append, ("w+", "r+", "a+"
 are update modes) /NULL/
int fprintf s write args to f according to
 (f,s,...) format s /< 0/
int fputc (c,f) s write c to f /EOF/
int fputs (s,f) s write s to f /EOF/
int fread s read n2 data items from f
 (s,n1,n2,f) into s; n1 is number bytes
 of each item /0/
void free (s) free block of space ptd to by
 s /NULL/
FILE *freopen s close f and open s1 with
 (s1,s2,f) mode s2 (see fopen) /NULL/
int fscanf s read args from f using format
 (f,s,...) s; return is as for scanf
int fseek s position file ptr; if n=0, l
 (f,l,n) is offset from beginning;
 n=1, from current pos; n=2,
 from end of file /non-<ero/
long ftell (f) s current offset from start of
 file
int fwrite s write n2 data items to f from
 (s,n1,n2,f) s; n1 is no. bytes of each
 item /NULL/
int getc (f) s read next char from f /EOF/
int getchar () s read next char from stdin
 /EOF/
char *getenv (s) rtn ptr to value of
 environment name s /NULL/
int getopt return next option letter in
 (argc,argv,s) argc that matches a letter
 in s; sets optarg (char *)
 pointing to it, and optind
 (int) to index in argv of

next arg to be processed;
 returns EOF when all args
 processed
char *gets (s) s read chars into s from stdin
 until newline or eof reached;

 newline not stored /NULL/
int getw (f) s read next word from f; use
 feof & ferror to check for
 error
struct tm t convert time ptd to by l to
 *gmtime (*l) GMT
int isalpha (c) c TRUE if c is alphabetic
int isalnum (c) c TRUE if c is alphanumeric
int isascii (c) c TRUE if c is less than 0200
int iscntrl (c) c TRUE if c is 0177 or < 040
int isdigit (c) c TRUE if c is 0-9
int isgraph (c) c TRUE if c is 041-0176
int isprint (c) c TRUE if c is a printable char
 (040-0176)
int ispunct (c) c TRUE if c is neither a
 control nor alphanumeric char
int isspace (c) c TRUE if c is space, tab,
 carriage return, newline,
 vertical tab or form feed
struct tm t convert time ptd to by l to
 *localtime (*l) local time
double log (d) m natural log of d /0/
double log10 (d) m log base 10 of d /0/
void longjmp j restore environment from
 (env,n) jmp_buf env; causes setjmp
 to return n if supplied or
 1 if n=0
char *malloc (u) allocate u bytes of storage
 and return ptr to it /NULL/
char *memchr n rtn ptr in s of 1st incident
 (s,c,n) of c, looking at n chars at
 most, or NULL if not found
int memcmp n rtn < 0, = 0, > 0 if s1 is
 (s1,s2,n) lexicographically < s2, = s2
 or > s2, comparing up to n
 chars
char *memccpy n copy s2 to s1 until c is
 (s1,s2,c,n) copied or n chars are copied
char *memcpy n copy n chars from s2 to s1
 (s1,s2,n)
char *memset n set n chars ptd to by s to
 (s,c,n) value c
int mknod create file s, mode i1; i2
 (s,i1,i2) needed only for certain
 values of i1 /-1/
char *mktemp (s) create temp file; s contains
 six trailing X's that mktemp
 replaces with file name
int pclose (f) s close a stream opened by
 popen /-1/
void perror (s) write s followed by descrip-
 tion of last error to stdout
FILE *popen s execute command in s1; s2 is
 (s1,s2) "r" to read its output; "w"
 to write to its input; rtns
 ptr to stream /NULL/
double pow m d1 to the d2-th power
 (d1,d2) /0,HUGE/
int printf s write args to stdout per
 (s,...) format s (see descr.) /< 0/
int putc (c,f) s write c to f /EOF/
int putchar (c) s write c to stdout /EOF/
int puts (s) s write s to stdout /EOF/
int putw (n,f) s write word n to f /EOF/
int rand () random number (see srand)
char *realloc change the size of block s
 (s,u) to u and rtn ptr to it /NULL/
void rewind (f) s rewind f
int scanf s read args from stdin per
 (s,...) format s (see descr.); rtns
 number of values read or EOF
int setjmp (env) j save stack environment in
 jump_buf env; rtns 0 (see
 longjmp)
double sin (d) m sine of d (d in radians)
unsigned sleep suspend execution for u
 (u) seconds
int sprintf s write args to buffer s1 per
 (s1,s2,...) format s2 /< 0/
double sqrt (d) m square root of d /0/
void srand (u) reset random number generator
int sscanf s read args from string s1 per
 (s1,s2,...) format s2; rtn is as in scanf
char *strcat r concatenate s2 to end of s1;
 (s1,s2) rtns s1
char *strchr r rtn ptr to 1st occurrence of
 (s,c) c in s or NULL if not found
int strcmp r compare s1 and s2; rtns < 0,
 (s1,s2) = 0, > 0 if s1 lexicograph-
 ically < s2, = s2, or > s2
char *strcpy r copy s2 to s1; rtns s1
 (s1,s2)
int strlen (s) r length of s (not incl. null)
char *strncat r concatenate at most n chars
 (s1,s2,n) from s2 to end of s1; rtns s1
int strncmp r compare at most n chars of
 (s1,s2,n) s1 to s2; rtn is as in strcmp
int strncpy r copy at most n chars from s2
 (s1,s2,n) to s1; rtns s1
char *strrchr r rtn ptr to last occurrence of
 (s,c) c in s or NULL if not found
long strtol ascii to long conversion,
 (s,*s,n) base n; on rtn, *s (if not
 NULL) pts to char in s that
 terminated the scan /0/
int system (s) s execute s as if it were typed
 at terminal; rtns exit status
 /-1/
double tan (d) m tangent of d (radians) /HUGE/
char *tempnam s create temporary file name in
 (s1,s2) directory s1, with prefix
 chars s2 /NULL/
long time (*l) returns time & date in
 seconds; if l is non-zero,
 time is stored in loc ptd to
 by l; convert time rtnd with
 ctime, localtime or gmtime
FILE *tmpfile () s create temporary file, open
 for update, and rtn ptr to
 it; file is removed when
 prog finishes
char *tmpnam (s) s generate temporary file name;
 place result in s if s non-
 null, else rtn ptr to name
int toascii (c) c convert c to ascii
int tolower (c) c convert c to lowercase
int toupper (c) c convert c to uppercase
int ungetc (c,f) s insert c back into file f
 (as if c wasn't read) /EOF/
int unlink (s) remove file s /-1/

NOTES:

Function argument types: c--char, n--int, u--
unsigned int, l--long int, d--double, f--ptr to
FILE, s--ptr to char

char and short int are converted to int when
passed to functions; float is converted to double

Include files are abbreviated as follows:
c--ctype.h, j--setjmp.h, m--math.h, n--memory.h,
r--string.h, s--stdio.h, t--time.h

Value between slashes is returned if function
detects an error; global int errno also gets set
to specific error number.

Function descriptions based on UNIX System V

Arguments typed in on the
command line when a
program is executed are
passed to the program
through argc and argv.
argc is a count of the
number of arguments, and
is at least 1; argv is an
array of character
pointers that point to
each argument. argv[0]
points to the name of the
program executed. Use
sscanf to convert
arguments stored in argv
to other data types. For
example:

check phone 35.79

starts execution (under
UNIX) of a program called
check; with

argc = 3
argv[0] = "check"
argv[1] = "phone"
argv[2] = "35.79"

To convert number in
argv[2], use sscanf.
EXAMPLE:

main (argc, argv)
 int argc;
 char *argv[];
 {
 float amount;
 ...
 sscanf (argv[2],
 "%f", &amount);
 ...
 }

TOOL DESCRIPTION

adb debugger
ar library archiver
cb formats programs
cflow ext references
ctrace traces execution
cxref X-ref listing
lint checks progs for
 possible bugs and
 non-portable
 language usage
make recreates program
 systems based on
 specified file
 dependencies
prof displays
 performance
 statistics
SCCS maintains large
 program systems
sdb symbolic debugger

1. Array indices start at
0 and go to number of
elements minus 1.
2. Use "==" (not "=") for
testing equality.
3. Use "->" for structure
pointers and "." for
structures.
4. Args to scanf must be
ptrs (place "&" in front
of non-ptrs).
5. 'x' is of type char;
"x" is of type ptr to
char.
6. If cp is ptr to char,
and c is array of char,
then cp="hello" is okay,
but c="hello" isn't.
7. In x[i]=++i, it's not
defined whether left or
right side will be
evaluated first.
8. In switch, omitting
break causes fall-through
to next case.
9. Return type for non-int
fns must be declared
unless fn previously
defined.
10. Fn arg types must be
consistent with type
declared (e.g. sqrt (2)
will produce the wrong
result).
11. In ++p, value of expr
is that of p after it's
incremented; in p++, value
is that of p before it's
incremented.

CHR OC HX

nul 0 0
soh 1 1
stx 2 2
etx 3 3
eot 4 4
enq 5 5
ack 6 6
bel 7 7
bs 10 8
ht 11 9
nl 12 A
vt 13 B
ff 14 C
cr 15 D
so 16 E
si 17 F
dle 20 10
dc1 21 11
dc2 22 12
dc3 23 13
dc4 24 14
nak 25 15
syn 26 16
etb 27 17
can 30 18
em 31 19
sub 32 1A
esc 33 1B
fs 34 1C
gs 35 1D
rs 36 1E
us 37 1F
sp 40 20
! 41 21
" 42 22
43 23
$ 44 24
% 45 25
& 46 26
' 47 27
(50 28
) 51 29
* 52 2A
+ 53 2B
, 54 2C
- 55 2D
. 56 2E
/ 57 2F
0 60 30
1 61 31
2 62 32
3 63 33
4 64 34
5 65 35
6 66 36
7 67 37
8 70 38
9 71 39
: 72 3A
; 73 3B
< 74 3C
= 75 3D
> 76 3E
? 77 3F
@ 100 40
A 101 41
B 102 42
C 103 43
D 104 44
E 105 45
F 106 46
G 107 47
H 110 48
I 111 49
J 112 4A
K 113 4B
L 114 4C
M 115 4D
N 116 4E
O 117 4F
P 120 50
Q 121 51
R 122 52
S 123 53
T 124 54
U 125 55
V 126 56
W 127 57
X 130 58
Y 131 59
Z 132 5A
[133 5B
\ 134 5C
] 135 5D
^ 136 5E
_ 137 5F
` 140 60
a 141 61
b 142 62
c 143 63
d 144 64
e 145 65
f 146 66
g 147 67
h 150 68
i 151 69
j 152 6A
k 153 6B
l 154 6C
m 155 6D
n 156 6E
o 157 6F
p 160 70
q 161 71
r 162 72
s 163 73
t 164 74
u 165 75
v 166 76
w 167 77
x 170 78
y 171 79
z 172 7A
{ 173 7B
| 174 7C
} 175 7D
~ 176 7E
del177 7F

